Description of fast matrix multiplication algorithm: ⟨10×16×20:1952⟩

Algorithm type

48X4Y12Z4+16X4Y12Z2+8X4Y8Z6+72X4Y8Z4+8X4Y4Z8+112X2Y12Z2+16X2Y8Z6+16X2Y12Z+8X4Y4Z6+32X2Y8Z4+64XY12Z+8X2Y8Z3+16X6Y4Z2+32X4Y4Z4+152X2Y8Z2+16XY8Z3+32XY8Z2+16X4Y4Z2+8X2Y4Z4+80XY8Z+8X2Y4Z3+16X3Y4Z+104X2Y4Z2+16X2Y4Z+96X2Y3Z2+16X2Y2Z3+16X2YZ4+32X2Y3Z+144X2Y2Z2+16X2YZ3+72XY4Z+32XY2Z3+32X3YZ+64X2YZ2+128XY3Z+64XY2Z2+32X2YZ+160XY2Z+144XYZ48X4Y12Z416X4Y12Z28X4Y8Z672X4Y8Z48X4Y4Z8112X2Y12Z216X2Y8Z616X2Y12Z8X4Y4Z632X2Y8Z464XY12Z8X2Y8Z316X6Y4Z232X4Y4Z4152X2Y8Z216XY8Z332XY8Z216X4Y4Z28X2Y4Z480XY8Z8X2Y4Z316X3Y4Z104X2Y4Z216X2Y4Z96X2Y3Z216X2Y2Z316X2YZ432X2Y3Z144X2Y2Z216X2YZ372XY4Z32XY2Z332X3YZ64X2YZ2128XY3Z64XY2Z232X2YZ160XY2Z144XYZ48*X^4*Y^12*Z^4+16*X^4*Y^12*Z^2+8*X^4*Y^8*Z^6+72*X^4*Y^8*Z^4+8*X^4*Y^4*Z^8+112*X^2*Y^12*Z^2+16*X^2*Y^8*Z^6+16*X^2*Y^12*Z+8*X^4*Y^4*Z^6+32*X^2*Y^8*Z^4+64*X*Y^12*Z+8*X^2*Y^8*Z^3+16*X^6*Y^4*Z^2+32*X^4*Y^4*Z^4+152*X^2*Y^8*Z^2+16*X*Y^8*Z^3+32*X*Y^8*Z^2+16*X^4*Y^4*Z^2+8*X^2*Y^4*Z^4+80*X*Y^8*Z+8*X^2*Y^4*Z^3+16*X^3*Y^4*Z+104*X^2*Y^4*Z^2+16*X^2*Y^4*Z+96*X^2*Y^3*Z^2+16*X^2*Y^2*Z^3+16*X^2*Y*Z^4+32*X^2*Y^3*Z+144*X^2*Y^2*Z^2+16*X^2*Y*Z^3+72*X*Y^4*Z+32*X*Y^2*Z^3+32*X^3*Y*Z+64*X^2*Y*Z^2+128*X*Y^3*Z+64*X*Y^2*Z^2+32*X^2*Y*Z+160*X*Y^2*Z+144*X*Y*Z

Algorithm definition

The algorithm ⟨10×16×20:1952⟩ is the (Kronecker) tensor product of ⟨2×4×5:32⟩ with ⟨5×4×4:61⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table