Description of fast matrix multiplication algorithm: ⟨10×15×28:2540⟩

Algorithm type

4X6Y4Z4+188X4Y4Z4+4X3Y6Z2+12X6Y2Z2+4X4Y2Z4+188X2Y6Z2+4X2Y2Z6+36X4Y2Z2+80X2Y4Z2+76X2Y2Z4+80XY6Z+12X3Y3Z+12X3Y2Z2+4X2Y3Z2+4XY3Z3+36X2Y3Z+668X2Y2Z2+76XY3Z2+36X3YZ+12X2YZ2+104XY3Z+12XYZ3+108X2YZ+240XY2Z+228XYZ2+312XYZ4X6Y4Z4188X4Y4Z44X3Y6Z212X6Y2Z24X4Y2Z4188X2Y6Z24X2Y2Z636X4Y2Z280X2Y4Z276X2Y2Z480XY6Z12X3Y3Z12X3Y2Z24X2Y3Z24XY3Z336X2Y3Z668X2Y2Z276XY3Z236X3YZ12X2YZ2104XY3Z12XYZ3108X2YZ240XY2Z228XYZ2312XYZ4*X^6*Y^4*Z^4+188*X^4*Y^4*Z^4+4*X^3*Y^6*Z^2+12*X^6*Y^2*Z^2+4*X^4*Y^2*Z^4+188*X^2*Y^6*Z^2+4*X^2*Y^2*Z^6+36*X^4*Y^2*Z^2+80*X^2*Y^4*Z^2+76*X^2*Y^2*Z^4+80*X*Y^6*Z+12*X^3*Y^3*Z+12*X^3*Y^2*Z^2+4*X^2*Y^3*Z^2+4*X*Y^3*Z^3+36*X^2*Y^3*Z+668*X^2*Y^2*Z^2+76*X*Y^3*Z^2+36*X^3*Y*Z+12*X^2*Y*Z^2+104*X*Y^3*Z+12*X*Y*Z^3+108*X^2*Y*Z+240*X*Y^2*Z+228*X*Y*Z^2+312*X*Y*Z

Algorithm definition

The algorithm ⟨10×15×28:2540⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨5×5×7:127⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table