Description of fast matrix multiplication algorithm: ⟨10×15×25:2320⟩

Algorithm type

10X6Y2Z4+170X4Y4Z4+10X2Y6Z4+20X2Y2Z8+4XY9Z2+20XY9Z+50X6Y2Z2+20X4Y2Z4+118X2Y6Z2+20X2Y4Z4+10X2Y2Z6+18XY6Z2+10X4Y2Z2+4X3Y3Z2+180X2Y4Z2+130X2Y2Z4+54XY6Z+8XY3Z4+20X3Y3Z+10X3Y2Z2+8X2Y3Z2+20XY4Z2+4XY3Z3+20XY2Z4+50X3Y2Z+16X3YZ2+4X2Y3Z+362X2Y2Z2+10XY4Z+68XY3Z2+10XY2Z3+32XYZ4+80X3YZ+10X2Y2Z+32X2YZ2+108XY3Z+162XY2Z2+16XYZ3+16X2YZ+86XY2Z+208XYZ2+112XYZ10X6Y2Z4170X4Y4Z410X2Y6Z420X2Y2Z84XY9Z220XY9Z50X6Y2Z220X4Y2Z4118X2Y6Z220X2Y4Z410X2Y2Z618XY6Z210X4Y2Z24X3Y3Z2180X2Y4Z2130X2Y2Z454XY6Z8XY3Z420X3Y3Z10X3Y2Z28X2Y3Z220XY4Z24XY3Z320XY2Z450X3Y2Z16X3YZ24X2Y3Z362X2Y2Z210XY4Z68XY3Z210XY2Z332XYZ480X3YZ10X2Y2Z32X2YZ2108XY3Z162XY2Z216XYZ316X2YZ86XY2Z208XYZ2112XYZ10*X^6*Y^2*Z^4+170*X^4*Y^4*Z^4+10*X^2*Y^6*Z^4+20*X^2*Y^2*Z^8+4*X*Y^9*Z^2+20*X*Y^9*Z+50*X^6*Y^2*Z^2+20*X^4*Y^2*Z^4+118*X^2*Y^6*Z^2+20*X^2*Y^4*Z^4+10*X^2*Y^2*Z^6+18*X*Y^6*Z^2+10*X^4*Y^2*Z^2+4*X^3*Y^3*Z^2+180*X^2*Y^4*Z^2+130*X^2*Y^2*Z^4+54*X*Y^6*Z+8*X*Y^3*Z^4+20*X^3*Y^3*Z+10*X^3*Y^2*Z^2+8*X^2*Y^3*Z^2+20*X*Y^4*Z^2+4*X*Y^3*Z^3+20*X*Y^2*Z^4+50*X^3*Y^2*Z+16*X^3*Y*Z^2+4*X^2*Y^3*Z+362*X^2*Y^2*Z^2+10*X*Y^4*Z+68*X*Y^3*Z^2+10*X*Y^2*Z^3+32*X*Y*Z^4+80*X^3*Y*Z+10*X^2*Y^2*Z+32*X^2*Y*Z^2+108*X*Y^3*Z+162*X*Y^2*Z^2+16*X*Y*Z^3+16*X^2*Y*Z+86*X*Y^2*Z+208*X*Y*Z^2+112*X*Y*Z

Algorithm definition

The algorithm ⟨10×15×25:2320⟩ is the (Kronecker) tensor product of ⟨2×5×5:40⟩ with ⟨5×3×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table