Description of fast matrix multiplication algorithm: ⟨10×15×24:2176⟩

Algorithm type

16X4Y12Z2+16X4Y8Z6+24X2Y12Z4+16X6Y8Z2+144X4Y8Z4+32X2Y12Z2+16X2Y12Z+24XY12Z2+16X2Y4Z8+32XY12Z+16X2Y8Z3+48X6Y4Z2+32X4Y4Z4+16X3Y8Z+144X2Y8Z2+40X2Y4Z6+64X4Y4Z2+64X2Y4Z4+16XY4Z4+48X3Y4Z+64X2Y4Z2+40XY4Z3+64X2Y4Z+32X2Y2Z3+64XY4Z2+32X3Y2Z+32X2Y3Z+288X2Y2Z2+32XY4Z+48XY3Z2+32XYZ4+96X3YZ+64X2YZ2+64XY3Z+80XYZ3+128X2YZ+128XYZ2+64XYZ16X4Y12Z216X4Y8Z624X2Y12Z416X6Y8Z2144X4Y8Z432X2Y12Z216X2Y12Z24XY12Z216X2Y4Z832XY12Z16X2Y8Z348X6Y4Z232X4Y4Z416X3Y8Z144X2Y8Z240X2Y4Z664X4Y4Z264X2Y4Z416XY4Z448X3Y4Z64X2Y4Z240XY4Z364X2Y4Z32X2Y2Z364XY4Z232X3Y2Z32X2Y3Z288X2Y2Z232XY4Z48XY3Z232XYZ496X3YZ64X2YZ264XY3Z80XYZ3128X2YZ128XYZ264XYZ16*X^4*Y^12*Z^2+16*X^4*Y^8*Z^6+24*X^2*Y^12*Z^4+16*X^6*Y^8*Z^2+144*X^4*Y^8*Z^4+32*X^2*Y^12*Z^2+16*X^2*Y^12*Z+24*X*Y^12*Z^2+16*X^2*Y^4*Z^8+32*X*Y^12*Z+16*X^2*Y^8*Z^3+48*X^6*Y^4*Z^2+32*X^4*Y^4*Z^4+16*X^3*Y^8*Z+144*X^2*Y^8*Z^2+40*X^2*Y^4*Z^6+64*X^4*Y^4*Z^2+64*X^2*Y^4*Z^4+16*X*Y^4*Z^4+48*X^3*Y^4*Z+64*X^2*Y^4*Z^2+40*X*Y^4*Z^3+64*X^2*Y^4*Z+32*X^2*Y^2*Z^3+64*X*Y^4*Z^2+32*X^3*Y^2*Z+32*X^2*Y^3*Z+288*X^2*Y^2*Z^2+32*X*Y^4*Z+48*X*Y^3*Z^2+32*X*Y*Z^4+96*X^3*Y*Z+64*X^2*Y*Z^2+64*X*Y^3*Z+80*X*Y*Z^3+128*X^2*Y*Z+128*X*Y*Z^2+64*X*Y*Z

Algorithm definition

The algorithm ⟨10×15×24:2176⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨5×3×6:68⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table