Description of fast matrix multiplication algorithm: ⟨10×15×24:2160⟩

Algorithm type

168X4Y4Z4+3X6Y2Z2+6X2Y6Z2+9X2Y4Z4+6X2Y2Z6+39X4Y2Z2+408X2Y4Z2+66X2Y2Z4+12XY6Z+18XY4Z2+6X3Y2Z+399X2Y2Z2+144XY4Z+12XY2Z3+6X3YZ+78X2Y2Z+12XY3Z+150XY2Z2+12XYZ3+78X2YZ+270XY2Z+132XYZ2+126XYZ168X4Y4Z43X6Y2Z26X2Y6Z29X2Y4Z46X2Y2Z639X4Y2Z2408X2Y4Z266X2Y2Z412XY6Z18XY4Z26X3Y2Z399X2Y2Z2144XY4Z12XY2Z36X3YZ78X2Y2Z12XY3Z150XY2Z212XYZ378X2YZ270XY2Z132XYZ2126XYZ168*X^4*Y^4*Z^4+3*X^6*Y^2*Z^2+6*X^2*Y^6*Z^2+9*X^2*Y^4*Z^4+6*X^2*Y^2*Z^6+39*X^4*Y^2*Z^2+408*X^2*Y^4*Z^2+66*X^2*Y^2*Z^4+12*X*Y^6*Z+18*X*Y^4*Z^2+6*X^3*Y^2*Z+399*X^2*Y^2*Z^2+144*X*Y^4*Z+12*X*Y^2*Z^3+6*X^3*Y*Z+78*X^2*Y^2*Z+12*X*Y^3*Z+150*X*Y^2*Z^2+12*X*Y*Z^3+78*X^2*Y*Z+270*X*Y^2*Z+132*X*Y*Z^2+126*X*Y*Z

Algorithm definition

The algorithm ⟨10×15×24:2160⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨5×5×8:144⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table