Description of fast matrix multiplication algorithm: ⟨10×15×21:2010⟩

Algorithm type

3X6Y4Z4+6X8Y2Z2+3X4Y6Z2+120X4Y4Z4+3X4Y2Z6+12X2Y8Z2+12X2Y2Z8+42X6Y2Z2+6X4Y4Z2+30X4Y2Z4+15X2Y6Z2+15X2Y2Z6+24XY8Z+6X3Y4Z2+6X2Y6Z+51X4Y2Z2+243X2Y4Z2+15X2Y2Z4+30XY6Z+12X4Y2Z+6X3Y2Z2+12X2Y4Z+6X2Y2Z3+24XY2Z4+12X4YZ+84X3Y2Z+6X2Y3Z+366X2Y2Z2+6X2YZ3+30XY4Z+30XY2Z3+24XYZ4+84X3YZ+114X2Y2Z+60X2YZ2+30XY3Z+30XY2Z2+30XYZ3+102X2YZ+138XY2Z+30XYZ2+132XYZ3X6Y4Z46X8Y2Z23X4Y6Z2120X4Y4Z43X4Y2Z612X2Y8Z212X2Y2Z842X6Y2Z26X4Y4Z230X4Y2Z415X2Y6Z215X2Y2Z624XY8Z6X3Y4Z26X2Y6Z51X4Y2Z2243X2Y4Z215X2Y2Z430XY6Z12X4Y2Z6X3Y2Z212X2Y4Z6X2Y2Z324XY2Z412X4YZ84X3Y2Z6X2Y3Z366X2Y2Z26X2YZ330XY4Z30XY2Z324XYZ484X3YZ114X2Y2Z60X2YZ230XY3Z30XY2Z230XYZ3102X2YZ138XY2Z30XYZ2132XYZ3*X^6*Y^4*Z^4+6*X^8*Y^2*Z^2+3*X^4*Y^6*Z^2+120*X^4*Y^4*Z^4+3*X^4*Y^2*Z^6+12*X^2*Y^8*Z^2+12*X^2*Y^2*Z^8+42*X^6*Y^2*Z^2+6*X^4*Y^4*Z^2+30*X^4*Y^2*Z^4+15*X^2*Y^6*Z^2+15*X^2*Y^2*Z^6+24*X*Y^8*Z+6*X^3*Y^4*Z^2+6*X^2*Y^6*Z+51*X^4*Y^2*Z^2+243*X^2*Y^4*Z^2+15*X^2*Y^2*Z^4+30*X*Y^6*Z+12*X^4*Y^2*Z+6*X^3*Y^2*Z^2+12*X^2*Y^4*Z+6*X^2*Y^2*Z^3+24*X*Y^2*Z^4+12*X^4*Y*Z+84*X^3*Y^2*Z+6*X^2*Y^3*Z+366*X^2*Y^2*Z^2+6*X^2*Y*Z^3+30*X*Y^4*Z+30*X*Y^2*Z^3+24*X*Y*Z^4+84*X^3*Y*Z+114*X^2*Y^2*Z+60*X^2*Y*Z^2+30*X*Y^3*Z+30*X*Y^2*Z^2+30*X*Y*Z^3+102*X^2*Y*Z+138*X*Y^2*Z+30*X*Y*Z^2+132*X*Y*Z

Algorithm definition

The algorithm ⟨10×15×21:2010⟩ is the (Kronecker) tensor product of ⟨5×5×7:134⟩ with ⟨2×3×3:15⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table