Description of fast matrix multiplication algorithm: ⟨10×15×20:1880⟩

Algorithm type

130X4Y4Z4+12XY9Z+40X6Y2Z2+20X4Y2Z4+82X2Y6Z2+10X2Y4Z4+20X2Y2Z6+4XY6Z2+60X4Y2Z2+160X2Y4Z2+80X2Y2Z4+42XY6Z+16X3Y3Z+8X2Y3Z2+10XY4Z2+8XY3Z3+40X3Y2Z+24X2Y3Z+278X2Y2Z2+30XY4Z+32XY3Z2+20XY2Z3+64X3YZ+60X2Y2Z+32X2YZ2+68XY3Z+96XY2Z2+32XYZ3+96X2YZ+98XY2Z+128XYZ2+80XYZ130X4Y4Z412XY9Z40X6Y2Z220X4Y2Z482X2Y6Z210X2Y4Z420X2Y2Z64XY6Z260X4Y2Z2160X2Y4Z280X2Y2Z442XY6Z16X3Y3Z8X2Y3Z210XY4Z28XY3Z340X3Y2Z24X2Y3Z278X2Y2Z230XY4Z32XY3Z220XY2Z364X3YZ60X2Y2Z32X2YZ268XY3Z96XY2Z232XYZ396X2YZ98XY2Z128XYZ280XYZ130*X^4*Y^4*Z^4+12*X*Y^9*Z+40*X^6*Y^2*Z^2+20*X^4*Y^2*Z^4+82*X^2*Y^6*Z^2+10*X^2*Y^4*Z^4+20*X^2*Y^2*Z^6+4*X*Y^6*Z^2+60*X^4*Y^2*Z^2+160*X^2*Y^4*Z^2+80*X^2*Y^2*Z^4+42*X*Y^6*Z+16*X^3*Y^3*Z+8*X^2*Y^3*Z^2+10*X*Y^4*Z^2+8*X*Y^3*Z^3+40*X^3*Y^2*Z+24*X^2*Y^3*Z+278*X^2*Y^2*Z^2+30*X*Y^4*Z+32*X*Y^3*Z^2+20*X*Y^2*Z^3+64*X^3*Y*Z+60*X^2*Y^2*Z+32*X^2*Y*Z^2+68*X*Y^3*Z+96*X*Y^2*Z^2+32*X*Y*Z^3+96*X^2*Y*Z+98*X*Y^2*Z+128*X*Y*Z^2+80*X*Y*Z

Algorithm definition

The algorithm ⟨10×15×20:1880⟩ is the (Kronecker) tensor product of ⟨2×5×5:40⟩ with ⟨5×3×4:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table