Description of fast matrix multiplication algorithm: ⟨10×15×16:1520⟩

Algorithm type

4X6Y4Z4+16XY12Z+92X4Y4Z4+16X2Y8Z2+16X2Y2Z8+4X3Y6Z2+52X6Y2Z2+32X4Y2Z4+92X2Y6Z2+16X4Y2Z2+16X2Y2Z4+16XY3Z4+52X3Y3Z+12X3Y2Z2+32X2Y3Z2+16X2Y3Z+336X2Y2Z2+48XY4Z+16XY3Z2+48XYZ4+156X3YZ+96X2YZ2+60XY3Z+48X2YZ+48XYZ2+180XYZ4X6Y4Z416XY12Z92X4Y4Z416X2Y8Z216X2Y2Z84X3Y6Z252X6Y2Z232X4Y2Z492X2Y6Z216X4Y2Z216X2Y2Z416XY3Z452X3Y3Z12X3Y2Z232X2Y3Z216X2Y3Z336X2Y2Z248XY4Z16XY3Z248XYZ4156X3YZ96X2YZ260XY3Z48X2YZ48XYZ2180XYZ4*X^6*Y^4*Z^4+16*X*Y^12*Z+92*X^4*Y^4*Z^4+16*X^2*Y^8*Z^2+16*X^2*Y^2*Z^8+4*X^3*Y^6*Z^2+52*X^6*Y^2*Z^2+32*X^4*Y^2*Z^4+92*X^2*Y^6*Z^2+16*X^4*Y^2*Z^2+16*X^2*Y^2*Z^4+16*X*Y^3*Z^4+52*X^3*Y^3*Z+12*X^3*Y^2*Z^2+32*X^2*Y^3*Z^2+16*X^2*Y^3*Z+336*X^2*Y^2*Z^2+48*X*Y^4*Z+16*X*Y^3*Z^2+48*X*Y*Z^4+156*X^3*Y*Z+96*X^2*Y*Z^2+60*X*Y^3*Z+48*X^2*Y*Z+48*X*Y*Z^2+180*X*Y*Z

Algorithm definition

The algorithm ⟨10×15×16:1520⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨5×5×4:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table