Description of fast matrix multiplication algorithm: ⟨10×14×32:2786⟩

Algorithm type

2X8Y14Z8+2X4Y14Z10+4X8Y10Z8+3X8Y8Z10+2X8Y8Z8+3X6Y8Z10+2X8Y6Z8+3X6Y8Z8+X6Y6Z10+3X4Y14Z4+4X4Y10Z8+X4Y8Z10+X8Y8Z4+3X6Y6Z8+4X4Y6Z10+10X4Y4Z10+4X4Y8Z4+32X4Y6Z6+4X4Y4Z8+X4Y2Z10+2X2Y8Z6+2X2Y4Z10+12X4Y7Z4+6X4Y6Z4+8X4Y4Z6+2X4Y2Z8+12X2Y7Z5+48X2Y6Z6+X2Y2Z10+24X4Y5Z4+18X4Y4Z5+70X4Y4Z4+18X3Y4Z5+11X2Y8Z2+4X2Y6Z4+5X2Y4Z6+12X4Y3Z4+18X3Y4Z4+6X3Y3Z5+18X2Y7Z2+24X2Y5Z4+6X2Y4Z5+7X4Y4Z2+X4Y2Z4+18X3Y3Z4+24X2Y6Z2+X2Y4Z4+24X2Y3Z5+14X2Y2Z6+60X2Y2Z5+12X4Y2Z2+26X2Y4Z2+192X2Y3Z3+31X2Y2Z4+6X2YZ5+12XY4Z3+12XY2Z5+36X2Y3Z2+48X2Y2Z3+12X2YZ4+288XY3Z3+6XYZ5+448X2Y2Z2+66XY4Z+24XY3Z2+30XY2Z3+6X2Y2Z+6X2YZ2+144XY3Z+6XY2Z2+84XYZ3+72X2YZ+12XY2Z+42XYZ2+600XYZ2X8Y14Z82X4Y14Z104X8Y10Z83X8Y8Z102X8Y8Z83X6Y8Z102X8Y6Z83X6Y8Z8X6Y6Z103X4Y14Z44X4Y10Z8X4Y8Z10X8Y8Z43X6Y6Z84X4Y6Z1010X4Y4Z104X4Y8Z432X4Y6Z64X4Y4Z8X4Y2Z102X2Y8Z62X2Y4Z1012X4Y7Z46X4Y6Z48X4Y4Z62X4Y2Z812X2Y7Z548X2Y6Z6X2Y2Z1024X4Y5Z418X4Y4Z570X4Y4Z418X3Y4Z511X2Y8Z24X2Y6Z45X2Y4Z612X4Y3Z418X3Y4Z46X3Y3Z518X2Y7Z224X2Y5Z46X2Y4Z57X4Y4Z2X4Y2Z418X3Y3Z424X2Y6Z2X2Y4Z424X2Y3Z514X2Y2Z660X2Y2Z512X4Y2Z226X2Y4Z2192X2Y3Z331X2Y2Z46X2YZ512XY4Z312XY2Z536X2Y3Z248X2Y2Z312X2YZ4288XY3Z36XYZ5448X2Y2Z266XY4Z24XY3Z230XY2Z36X2Y2Z6X2YZ2144XY3Z6XY2Z284XYZ372X2YZ12XY2Z42XYZ2600XYZ2*X^8*Y^14*Z^8+2*X^4*Y^14*Z^10+4*X^8*Y^10*Z^8+3*X^8*Y^8*Z^10+2*X^8*Y^8*Z^8+3*X^6*Y^8*Z^10+2*X^8*Y^6*Z^8+3*X^6*Y^8*Z^8+X^6*Y^6*Z^10+3*X^4*Y^14*Z^4+4*X^4*Y^10*Z^8+X^4*Y^8*Z^10+X^8*Y^8*Z^4+3*X^6*Y^6*Z^8+4*X^4*Y^6*Z^10+10*X^4*Y^4*Z^10+4*X^4*Y^8*Z^4+32*X^4*Y^6*Z^6+4*X^4*Y^4*Z^8+X^4*Y^2*Z^10+2*X^2*Y^8*Z^6+2*X^2*Y^4*Z^10+12*X^4*Y^7*Z^4+6*X^4*Y^6*Z^4+8*X^4*Y^4*Z^6+2*X^4*Y^2*Z^8+12*X^2*Y^7*Z^5+48*X^2*Y^6*Z^6+X^2*Y^2*Z^10+24*X^4*Y^5*Z^4+18*X^4*Y^4*Z^5+70*X^4*Y^4*Z^4+18*X^3*Y^4*Z^5+11*X^2*Y^8*Z^2+4*X^2*Y^6*Z^4+5*X^2*Y^4*Z^6+12*X^4*Y^3*Z^4+18*X^3*Y^4*Z^4+6*X^3*Y^3*Z^5+18*X^2*Y^7*Z^2+24*X^2*Y^5*Z^4+6*X^2*Y^4*Z^5+7*X^4*Y^4*Z^2+X^4*Y^2*Z^4+18*X^3*Y^3*Z^4+24*X^2*Y^6*Z^2+X^2*Y^4*Z^4+24*X^2*Y^3*Z^5+14*X^2*Y^2*Z^6+60*X^2*Y^2*Z^5+12*X^4*Y^2*Z^2+26*X^2*Y^4*Z^2+192*X^2*Y^3*Z^3+31*X^2*Y^2*Z^4+6*X^2*Y*Z^5+12*X*Y^4*Z^3+12*X*Y^2*Z^5+36*X^2*Y^3*Z^2+48*X^2*Y^2*Z^3+12*X^2*Y*Z^4+288*X*Y^3*Z^3+6*X*Y*Z^5+448*X^2*Y^2*Z^2+66*X*Y^4*Z+24*X*Y^3*Z^2+30*X*Y^2*Z^3+6*X^2*Y^2*Z+6*X^2*Y*Z^2+144*X*Y^3*Z+6*X*Y^2*Z^2+84*X*Y*Z^3+72*X^2*Y*Z+12*X*Y^2*Z+42*X*Y*Z^2+600*X*Y*Z

Algorithm definition

The algorithm ⟨10×14×32:2786⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨5×7×16:398⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table