Description of fast matrix multiplication algorithm: ⟨10×14×28:2432⟩

Algorithm type

16X4Y12Z8+32X4Y10Z8+32X4Y8Z8+24X2Y14Z4+24X4Y6Z8+8X2Y12Z4+72X4Y4Z8+136X2Y10Z4+16X2Y6Z8+32X2Y5Z8+8X4Y2Z8+48X2Y8Z4+32X2Y4Z8+24X2Y3Z8+72X2Y6Z4+72X2Y2Z8+24XY7Z4+8X2YZ8+8XY6Z4+32X2Y6Z2+40X2Y4Z4+136XY5Z4+64X2Y5Z2+48XY7Z+48XY4Z4+64X2Y4Z2+96X2Y2Z4+16XY6Z+72XY3Z4+48X2Y3Z2+272XY5Z+40XY2Z4+144X2Y2Z2+96XY4Z+96XYZ4+16X2YZ2+144XY3Z+80XY2Z+192XYZ16X4Y12Z832X4Y10Z832X4Y8Z824X2Y14Z424X4Y6Z88X2Y12Z472X4Y4Z8136X2Y10Z416X2Y6Z832X2Y5Z88X4Y2Z848X2Y8Z432X2Y4Z824X2Y3Z872X2Y6Z472X2Y2Z824XY7Z48X2YZ88XY6Z432X2Y6Z240X2Y4Z4136XY5Z464X2Y5Z248XY7Z48XY4Z464X2Y4Z296X2Y2Z416XY6Z72XY3Z448X2Y3Z2272XY5Z40XY2Z4144X2Y2Z296XY4Z96XYZ416X2YZ2144XY3Z80XY2Z192XYZ16*X^4*Y^12*Z^8+32*X^4*Y^10*Z^8+32*X^4*Y^8*Z^8+24*X^2*Y^14*Z^4+24*X^4*Y^6*Z^8+8*X^2*Y^12*Z^4+72*X^4*Y^4*Z^8+136*X^2*Y^10*Z^4+16*X^2*Y^6*Z^8+32*X^2*Y^5*Z^8+8*X^4*Y^2*Z^8+48*X^2*Y^8*Z^4+32*X^2*Y^4*Z^8+24*X^2*Y^3*Z^8+72*X^2*Y^6*Z^4+72*X^2*Y^2*Z^8+24*X*Y^7*Z^4+8*X^2*Y*Z^8+8*X*Y^6*Z^4+32*X^2*Y^6*Z^2+40*X^2*Y^4*Z^4+136*X*Y^5*Z^4+64*X^2*Y^5*Z^2+48*X*Y^7*Z+48*X*Y^4*Z^4+64*X^2*Y^4*Z^2+96*X^2*Y^2*Z^4+16*X*Y^6*Z+72*X*Y^3*Z^4+48*X^2*Y^3*Z^2+272*X*Y^5*Z+40*X*Y^2*Z^4+144*X^2*Y^2*Z^2+96*X*Y^4*Z+96*X*Y*Z^4+16*X^2*Y*Z^2+144*X*Y^3*Z+80*X*Y^2*Z+192*X*Y*Z

Algorithm definition

The algorithm ⟨10×14×28:2432⟩ is the (Kronecker) tensor product of ⟨2×7×7:76⟩ with ⟨5×2×4:32⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table