Description of fast matrix multiplication algorithm: ⟨10×14×26:2275⟩

Algorithm type

3X8Y8Z8+X8Y6Z8+6X6Y10Z6+X4Y14Z4+2X8Y6Z6+X8Y4Z8+6X6Y8Z6+X4Y12Z4+3X6Y6Z6+X6Y4Z8+X4Y12Z2+5X4Y10Z4+X2Y14Z2+X8Y2Z6+3X6Y4Z6+2X4Y10Z2+6X4Y8Z4+32X4Y6Z6+2X4Y8Z2+9X4Y6Z4+3X2Y10Z2+48X2Y6Z6+2X4Y6Z2+62X4Y4Z4+8X2Y8Z2+6X4Y3Z4+36X3Y5Z3+6X2Y7Z2+12X4Y3Z3+6X4Y2Z4+36X3Y4Z3+24X2Y6Z2+3X2Y4Z4+18X3Y3Z3+6X3Y2Z4+6X2Y6Z+30X2Y5Z2+6XY7Z+X4Y2Z2+6X4YZ3+18X3Y2Z3+12X2Y5Z+68X2Y4Z2+192X2Y3Z3+18X2Y2Z4+12X2Y4Z+54X2Y3Z2+18XY5Z+288XY3Z3+12X2Y3Z+325X2Y2Z2+48XY4Z+108XY3Z+18XY2Z2+6X2YZ+192XY2Z+108XYZ2+366XYZ3X8Y8Z8X8Y6Z86X6Y10Z6X4Y14Z42X8Y6Z6X8Y4Z86X6Y8Z6X4Y12Z43X6Y6Z6X6Y4Z8X4Y12Z25X4Y10Z4X2Y14Z2X8Y2Z63X6Y4Z62X4Y10Z26X4Y8Z432X4Y6Z62X4Y8Z29X4Y6Z43X2Y10Z248X2Y6Z62X4Y6Z262X4Y4Z48X2Y8Z26X4Y3Z436X3Y5Z36X2Y7Z212X4Y3Z36X4Y2Z436X3Y4Z324X2Y6Z23X2Y4Z418X3Y3Z36X3Y2Z46X2Y6Z30X2Y5Z26XY7ZX4Y2Z26X4YZ318X3Y2Z312X2Y5Z68X2Y4Z2192X2Y3Z318X2Y2Z412X2Y4Z54X2Y3Z218XY5Z288XY3Z312X2Y3Z325X2Y2Z248XY4Z108XY3Z18XY2Z26X2YZ192XY2Z108XYZ2366XYZ3*X^8*Y^8*Z^8+X^8*Y^6*Z^8+6*X^6*Y^10*Z^6+X^4*Y^14*Z^4+2*X^8*Y^6*Z^6+X^8*Y^4*Z^8+6*X^6*Y^8*Z^6+X^4*Y^12*Z^4+3*X^6*Y^6*Z^6+X^6*Y^4*Z^8+X^4*Y^12*Z^2+5*X^4*Y^10*Z^4+X^2*Y^14*Z^2+X^8*Y^2*Z^6+3*X^6*Y^4*Z^6+2*X^4*Y^10*Z^2+6*X^4*Y^8*Z^4+32*X^4*Y^6*Z^6+2*X^4*Y^8*Z^2+9*X^4*Y^6*Z^4+3*X^2*Y^10*Z^2+48*X^2*Y^6*Z^6+2*X^4*Y^6*Z^2+62*X^4*Y^4*Z^4+8*X^2*Y^8*Z^2+6*X^4*Y^3*Z^4+36*X^3*Y^5*Z^3+6*X^2*Y^7*Z^2+12*X^4*Y^3*Z^3+6*X^4*Y^2*Z^4+36*X^3*Y^4*Z^3+24*X^2*Y^6*Z^2+3*X^2*Y^4*Z^4+18*X^3*Y^3*Z^3+6*X^3*Y^2*Z^4+6*X^2*Y^6*Z+30*X^2*Y^5*Z^2+6*X*Y^7*Z+X^4*Y^2*Z^2+6*X^4*Y*Z^3+18*X^3*Y^2*Z^3+12*X^2*Y^5*Z+68*X^2*Y^4*Z^2+192*X^2*Y^3*Z^3+18*X^2*Y^2*Z^4+12*X^2*Y^4*Z+54*X^2*Y^3*Z^2+18*X*Y^5*Z+288*X*Y^3*Z^3+12*X^2*Y^3*Z+325*X^2*Y^2*Z^2+48*X*Y^4*Z+108*X*Y^3*Z+18*X*Y^2*Z^2+6*X^2*Y*Z+192*X*Y^2*Z+108*X*Y*Z^2+366*X*Y*Z

Algorithm definition

The algorithm ⟨10×14×26:2275⟩ is the (Kronecker) tensor product of ⟨5×7×13:325⟩ with ⟨2×2×2:7⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table