Description of fast matrix multiplication algorithm: ⟨10×14×20:1778⟩

Algorithm type

2X4Y4Z6+94X4Y4Z4+2X6Y2Z2+2X4Y2Z4+6X2Y2Z6+38X4Y2Z2+40X2Y4Z2+18X2Y2Z4+12X2Y2Z3+616X2Y2Z2+12X3YZ+12X2YZ2+36XYZ3+228X2YZ+240XY2Z+108XYZ2+312XYZ2X4Y4Z694X4Y4Z42X6Y2Z22X4Y2Z46X2Y2Z638X4Y2Z240X2Y4Z218X2Y2Z412X2Y2Z3616X2Y2Z212X3YZ12X2YZ236XYZ3228X2YZ240XY2Z108XYZ2312XYZ2*X^4*Y^4*Z^6+94*X^4*Y^4*Z^4+2*X^6*Y^2*Z^2+2*X^4*Y^2*Z^4+6*X^2*Y^2*Z^6+38*X^4*Y^2*Z^2+40*X^2*Y^4*Z^2+18*X^2*Y^2*Z^4+12*X^2*Y^2*Z^3+616*X^2*Y^2*Z^2+12*X^3*Y*Z+12*X^2*Y*Z^2+36*X*Y*Z^3+228*X^2*Y*Z+240*X*Y^2*Z+108*X*Y*Z^2+312*X*Y*Z

Algorithm definition

The algorithm ⟨10×14×20:1778⟩ is the (Kronecker) tensor product of ⟨10×14×10:889⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table