Description of fast matrix multiplication algorithm: ⟨10×12×32:2340⟩

Algorithm type

6X6Y6Z2+18X4Y4Z6+2X3Y9Z+162X4Y4Z4+6X2Y6Z4+2XY9Z2+6X2Y6Z3+20XY9Z+6X6Y2Z2+8X3Y6Z+114X2Y6Z2+42X2Y4Z4+30X2Y2Z6+24X2Y4Z3+22XY6Z2+6X4Y2Z2+300X2Y4Z2+96X2Y2Z4+108XY6Z+12X3Y3Z+30X2Y2Z3+56XY4Z2+10XY3Z3+8X3Y2Z+2X2Y3Z+294X2Y2Z2+112XY4Z+42XY3Z2+40XY2Z3+10X3YZ+8X2Y2Z+108XY3Z+198XY2Z2+50XYZ3+10X2YZ+172XY2Z+160XYZ2+40XYZ6X6Y6Z218X4Y4Z62X3Y9Z162X4Y4Z46X2Y6Z42XY9Z26X2Y6Z320XY9Z6X6Y2Z28X3Y6Z114X2Y6Z242X2Y4Z430X2Y2Z624X2Y4Z322XY6Z26X4Y2Z2300X2Y4Z296X2Y2Z4108XY6Z12X3Y3Z30X2Y2Z356XY4Z210XY3Z38X3Y2Z2X2Y3Z294X2Y2Z2112XY4Z42XY3Z240XY2Z310X3YZ8X2Y2Z108XY3Z198XY2Z250XYZ310X2YZ172XY2Z160XYZ240XYZ6*X^6*Y^6*Z^2+18*X^4*Y^4*Z^6+2*X^3*Y^9*Z+162*X^4*Y^4*Z^4+6*X^2*Y^6*Z^4+2*X*Y^9*Z^2+6*X^2*Y^6*Z^3+20*X*Y^9*Z+6*X^6*Y^2*Z^2+8*X^3*Y^6*Z+114*X^2*Y^6*Z^2+42*X^2*Y^4*Z^4+30*X^2*Y^2*Z^6+24*X^2*Y^4*Z^3+22*X*Y^6*Z^2+6*X^4*Y^2*Z^2+300*X^2*Y^4*Z^2+96*X^2*Y^2*Z^4+108*X*Y^6*Z+12*X^3*Y^3*Z+30*X^2*Y^2*Z^3+56*X*Y^4*Z^2+10*X*Y^3*Z^3+8*X^3*Y^2*Z+2*X^2*Y^3*Z+294*X^2*Y^2*Z^2+112*X*Y^4*Z+42*X*Y^3*Z^2+40*X*Y^2*Z^3+10*X^3*Y*Z+8*X^2*Y^2*Z+108*X*Y^3*Z+198*X*Y^2*Z^2+50*X*Y*Z^3+10*X^2*Y*Z+172*X*Y^2*Z+160*X*Y*Z^2+40*X*Y*Z

Algorithm definition

The algorithm ⟨10×12×32:2340⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨5×3×8:90⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table