Description of fast matrix multiplication algorithm: ⟨10×12×28:2054⟩

Algorithm type

12X4Y4Z6+144X4Y4Z4+12X2Y2Z8+4X2Y6Z3+14XY9Z+12X6Y2Z2+90X2Y6Z2+36X2Y4Z4+24X2Y2Z6+16X2Y4Z3+12XY6Z2+12X4Y2Z2+264X2Y4Z2+84X2Y2Z4+80XY6Z+4XY3Z4+4X3Y3Z+20X2Y2Z3+48XY4Z2+8XY3Z3+16XY2Z4+16X3Y2Z+4X2Y3Z+264X2Y2Z2+96XY4Z+28XY3Z2+32XY2Z3+20XYZ4+20X3YZ+16X2Y2Z+78XY3Z+172XY2Z2+40XYZ3+20X2YZ+152XY2Z+140XYZ2+40XYZ12X4Y4Z6144X4Y4Z412X2Y2Z84X2Y6Z314XY9Z12X6Y2Z290X2Y6Z236X2Y4Z424X2Y2Z616X2Y4Z312XY6Z212X4Y2Z2264X2Y4Z284X2Y2Z480XY6Z4XY3Z44X3Y3Z20X2Y2Z348XY4Z28XY3Z316XY2Z416X3Y2Z4X2Y3Z264X2Y2Z296XY4Z28XY3Z232XY2Z320XYZ420X3YZ16X2Y2Z78XY3Z172XY2Z240XYZ320X2YZ152XY2Z140XYZ240XYZ12*X^4*Y^4*Z^6+144*X^4*Y^4*Z^4+12*X^2*Y^2*Z^8+4*X^2*Y^6*Z^3+14*X*Y^9*Z+12*X^6*Y^2*Z^2+90*X^2*Y^6*Z^2+36*X^2*Y^4*Z^4+24*X^2*Y^2*Z^6+16*X^2*Y^4*Z^3+12*X*Y^6*Z^2+12*X^4*Y^2*Z^2+264*X^2*Y^4*Z^2+84*X^2*Y^2*Z^4+80*X*Y^6*Z+4*X*Y^3*Z^4+4*X^3*Y^3*Z+20*X^2*Y^2*Z^3+48*X*Y^4*Z^2+8*X*Y^3*Z^3+16*X*Y^2*Z^4+16*X^3*Y^2*Z+4*X^2*Y^3*Z+264*X^2*Y^2*Z^2+96*X*Y^4*Z+28*X*Y^3*Z^2+32*X*Y^2*Z^3+20*X*Y*Z^4+20*X^3*Y*Z+16*X^2*Y^2*Z+78*X*Y^3*Z+172*X*Y^2*Z^2+40*X*Y*Z^3+20*X^2*Y*Z+152*X*Y^2*Z+140*X*Y*Z^2+40*X*Y*Z

Algorithm definition

The algorithm ⟨10×12×28:2054⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨5×3×7:79⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table