Description of fast matrix multiplication algorithm: ⟨10×12×25:1856⟩

Algorithm type

8X2Y12Z4+136X4Y8Z4+40X2Y12Z2+8XY12Z2+8X6Y4Z4+16X2Y8Z4+16X2Y4Z8+40XY12Z+40X6Y4Z2+16X4Y4Z4+144X2Y8Z2+8X2Y4Z6+16XY8Z2+8X4Y4Z2+104X2Y4Z4+8XY8Z+8X3Y4Z2+16XY4Z4+40X3Y4Z+72X2Y4Z2+8XY4Z3+8X2Y4Z+104XY4Z2+16X3YZ2+272X2Y2Z2+56XY4Z+16XY3Z2+32XYZ4+80X3YZ+32X2YZ2+80XY3Z+32XY2Z2+16XYZ3+16X2YZ+16XY2Z+208XYZ2+112XYZ8X2Y12Z4136X4Y8Z440X2Y12Z28XY12Z28X6Y4Z416X2Y8Z416X2Y4Z840XY12Z40X6Y4Z216X4Y4Z4144X2Y8Z28X2Y4Z616XY8Z28X4Y4Z2104X2Y4Z48XY8Z8X3Y4Z216XY4Z440X3Y4Z72X2Y4Z28XY4Z38X2Y4Z104XY4Z216X3YZ2272X2Y2Z256XY4Z16XY3Z232XYZ480X3YZ32X2YZ280XY3Z32XY2Z216XYZ316X2YZ16XY2Z208XYZ2112XYZ8*X^2*Y^12*Z^4+136*X^4*Y^8*Z^4+40*X^2*Y^12*Z^2+8*X*Y^12*Z^2+8*X^6*Y^4*Z^4+16*X^2*Y^8*Z^4+16*X^2*Y^4*Z^8+40*X*Y^12*Z+40*X^6*Y^4*Z^2+16*X^4*Y^4*Z^4+144*X^2*Y^8*Z^2+8*X^2*Y^4*Z^6+16*X*Y^8*Z^2+8*X^4*Y^4*Z^2+104*X^2*Y^4*Z^4+8*X*Y^8*Z+8*X^3*Y^4*Z^2+16*X*Y^4*Z^4+40*X^3*Y^4*Z+72*X^2*Y^4*Z^2+8*X*Y^4*Z^3+8*X^2*Y^4*Z+104*X*Y^4*Z^2+16*X^3*Y*Z^2+272*X^2*Y^2*Z^2+56*X*Y^4*Z+16*X*Y^3*Z^2+32*X*Y*Z^4+80*X^3*Y*Z+32*X^2*Y*Z^2+80*X*Y^3*Z+32*X*Y^2*Z^2+16*X*Y*Z^3+16*X^2*Y*Z+16*X*Y^2*Z+208*X*Y*Z^2+112*X*Y*Z

Algorithm definition

The algorithm ⟨10×12×25:1856⟩ is the (Kronecker) tensor product of ⟨2×4×5:32⟩ with ⟨5×3×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table