Description of fast matrix multiplication algorithm: ⟨10×12×21:1560⟩

Algorithm type

108X4Y4Z4+6X2Y4Z4+24X4Y2Z2+264X2Y4Z2+60X2Y2Z4+12XY4Z2+282X2Y2Z2+96XY4Z+48X2Y2Z+132XY2Z2+48X2YZ+228XY2Z+120XYZ2+132XYZ108X4Y4Z46X2Y4Z424X4Y2Z2264X2Y4Z260X2Y2Z412XY4Z2282X2Y2Z296XY4Z48X2Y2Z132XY2Z248X2YZ228XY2Z120XYZ2132XYZ108*X^4*Y^4*Z^4+6*X^2*Y^4*Z^4+24*X^4*Y^2*Z^2+264*X^2*Y^4*Z^2+60*X^2*Y^2*Z^4+12*X*Y^4*Z^2+282*X^2*Y^2*Z^2+96*X*Y^4*Z+48*X^2*Y^2*Z+132*X*Y^2*Z^2+48*X^2*Y*Z+228*X*Y^2*Z+120*X*Y*Z^2+132*X*Y*Z

Algorithm definition

The algorithm ⟨10×12×21:1560⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨5×4×7:104⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table