Description of fast matrix multiplication algorithm: ⟨10×12×20:1508⟩

Algorithm type

6X6Y2Z4+102X4Y4Z4+6X2Y6Z4+12X2Y2Z8+2XY9Z2+10XY9Z+30X6Y2Z2+12X4Y2Z4+64X2Y6Z2+12X2Y4Z4+6X2Y2Z6+12XY6Z2+6X4Y2Z2+2X3Y3Z2+142X2Y4Z2+78X2Y2Z4+42XY6Z+4XY3Z4+10X3Y3Z+8X3Y2Z2+4X2Y3Z2+16XY4Z2+2XY3Z3+16XY2Z4+40X3Y2Z+10X3YZ2+2X2Y3Z+228X2Y2Z2+8XY4Z+36XY3Z2+8XY2Z3+20XYZ4+50X3YZ+8X2Y2Z+20X2YZ2+64XY3Z+124XY2Z2+10XYZ3+10X2YZ+66XY2Z+130XYZ2+70XYZ6X6Y2Z4102X4Y4Z46X2Y6Z412X2Y2Z82XY9Z210XY9Z30X6Y2Z212X4Y2Z464X2Y6Z212X2Y4Z46X2Y2Z612XY6Z26X4Y2Z22X3Y3Z2142X2Y4Z278X2Y2Z442XY6Z4XY3Z410X3Y3Z8X3Y2Z24X2Y3Z216XY4Z22XY3Z316XY2Z440X3Y2Z10X3YZ22X2Y3Z228X2Y2Z28XY4Z36XY3Z28XY2Z320XYZ450X3YZ8X2Y2Z20X2YZ264XY3Z124XY2Z210XYZ310X2YZ66XY2Z130XYZ270XYZ6*X^6*Y^2*Z^4+102*X^4*Y^4*Z^4+6*X^2*Y^6*Z^4+12*X^2*Y^2*Z^8+2*X*Y^9*Z^2+10*X*Y^9*Z+30*X^6*Y^2*Z^2+12*X^4*Y^2*Z^4+64*X^2*Y^6*Z^2+12*X^2*Y^4*Z^4+6*X^2*Y^2*Z^6+12*X*Y^6*Z^2+6*X^4*Y^2*Z^2+2*X^3*Y^3*Z^2+142*X^2*Y^4*Z^2+78*X^2*Y^2*Z^4+42*X*Y^6*Z+4*X*Y^3*Z^4+10*X^3*Y^3*Z+8*X^3*Y^2*Z^2+4*X^2*Y^3*Z^2+16*X*Y^4*Z^2+2*X*Y^3*Z^3+16*X*Y^2*Z^4+40*X^3*Y^2*Z+10*X^3*Y*Z^2+2*X^2*Y^3*Z+228*X^2*Y^2*Z^2+8*X*Y^4*Z+36*X*Y^3*Z^2+8*X*Y^2*Z^3+20*X*Y*Z^4+50*X^3*Y*Z+8*X^2*Y^2*Z+20*X^2*Y*Z^2+64*X*Y^3*Z+124*X*Y^2*Z^2+10*X*Y*Z^3+10*X^2*Y*Z+66*X*Y^2*Z+130*X*Y*Z^2+70*X*Y*Z

Algorithm definition

The algorithm ⟨10×12×20:1508⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨5×3×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table