Description of fast matrix multiplication algorithm: ⟨10×12×12:910⟩

Algorithm type

50X4Y4Z4+3X6Y2Z2+X4Y2Z4+2X2Y6Z2+X2Y4Z4+2X2Y2Z6+16X4Y2Z2+18X2Y4Z2+16X2Y2Z4+321X2Y2Z2+18X3YZ+6X2YZ2+12XY3Z+6XY2Z2+12XYZ3+96X2YZ+108XY2Z+96XYZ2+126XYZ50X4Y4Z43X6Y2Z2X4Y2Z42X2Y6Z2X2Y4Z42X2Y2Z616X4Y2Z218X2Y4Z216X2Y2Z4321X2Y2Z218X3YZ6X2YZ212XY3Z6XY2Z212XYZ396X2YZ108XY2Z96XYZ2126XYZ50*X^4*Y^4*Z^4+3*X^6*Y^2*Z^2+X^4*Y^2*Z^4+2*X^2*Y^6*Z^2+X^2*Y^4*Z^4+2*X^2*Y^2*Z^6+16*X^4*Y^2*Z^2+18*X^2*Y^4*Z^2+16*X^2*Y^2*Z^4+321*X^2*Y^2*Z^2+18*X^3*Y*Z+6*X^2*Y*Z^2+12*X*Y^3*Z+6*X*Y^2*Z^2+12*X*Y*Z^3+96*X^2*Y*Z+108*X*Y^2*Z+96*X*Y*Z^2+126*X*Y*Z

Algorithm definition

The algorithm ⟨10×12×12:910⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨5×6×6:130⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table