Description of fast matrix multiplication algorithm: ⟨10×10×30:1920⟩

Algorithm type

10X4Y4Z8+50X4Y4Z6+10X2Y2Z10+60X4Y4Z4+4X2Y6Z4+60X2Y2Z8+20X2Y6Z3+24X2Y6Z2+10X2Y4Z4+80X2Y2Z6+50X2Y4Z3+4XY3Z5+60X2Y4Z2+96X2Y2Z4+24XY3Z4+10XY2Z5+80X2Y2Z3+32XY3Z3+60XY2Z4+16XYZ5+226X2Y2Z2+32XY3Z2+80XY2Z3+96XYZ4+52XY3Z+80XY2Z2+128XYZ3+130XY2Z+128XYZ2+208XYZ10X4Y4Z850X4Y4Z610X2Y2Z1060X4Y4Z44X2Y6Z460X2Y2Z820X2Y6Z324X2Y6Z210X2Y4Z480X2Y2Z650X2Y4Z34XY3Z560X2Y4Z296X2Y2Z424XY3Z410XY2Z580X2Y2Z332XY3Z360XY2Z416XYZ5226X2Y2Z232XY3Z280XY2Z396XYZ452XY3Z80XY2Z2128XYZ3130XY2Z128XYZ2208XYZ10*X^4*Y^4*Z^8+50*X^4*Y^4*Z^6+10*X^2*Y^2*Z^10+60*X^4*Y^4*Z^4+4*X^2*Y^6*Z^4+60*X^2*Y^2*Z^8+20*X^2*Y^6*Z^3+24*X^2*Y^6*Z^2+10*X^2*Y^4*Z^4+80*X^2*Y^2*Z^6+50*X^2*Y^4*Z^3+4*X*Y^3*Z^5+60*X^2*Y^4*Z^2+96*X^2*Y^2*Z^4+24*X*Y^3*Z^4+10*X*Y^2*Z^5+80*X^2*Y^2*Z^3+32*X*Y^3*Z^3+60*X*Y^2*Z^4+16*X*Y*Z^5+226*X^2*Y^2*Z^2+32*X*Y^3*Z^2+80*X*Y^2*Z^3+96*X*Y*Z^4+52*X*Y^3*Z+80*X*Y^2*Z^2+128*X*Y*Z^3+130*X*Y^2*Z+128*X*Y*Z^2+208*X*Y*Z

Algorithm definition

The algorithm ⟨10×10×30:1920⟩ is the (Kronecker) tensor product of ⟨2×5×5:40⟩ with ⟨5×2×6:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table