Description of fast matrix multiplication algorithm: ⟨10×10×28:1760⟩

Algorithm type

16X4Y8Z10+16X4Y8Z8+8X4Y8Z6+80X4Y8Z4+48X2Y4Z10+16X2Y8Z5+8X4Y8Z2+16X2Y8Z4+56X2Y4Z8+8X2Y8Z3+96X2Y8Z2+32X2Y4Z6+8X2Y8Z+48X2Y4Z4+16XY8Z+48XY4Z5+32X2Y2Z5+56XY4Z4+112X2Y4Z2+32X2Y2Z4+32XY4Z3+16X2Y2Z3+48XY4Z2+96XYZ5+160X2Y2Z2+112XY4Z+112XYZ4+16X2Y2Z+64XYZ3+32XY2Z+96XYZ2+224XYZ16X4Y8Z1016X4Y8Z88X4Y8Z680X4Y8Z448X2Y4Z1016X2Y8Z58X4Y8Z216X2Y8Z456X2Y4Z88X2Y8Z396X2Y8Z232X2Y4Z68X2Y8Z48X2Y4Z416XY8Z48XY4Z532X2Y2Z556XY4Z4112X2Y4Z232X2Y2Z432XY4Z316X2Y2Z348XY4Z296XYZ5160X2Y2Z2112XY4Z112XYZ416X2Y2Z64XYZ332XY2Z96XYZ2224XYZ16*X^4*Y^8*Z^10+16*X^4*Y^8*Z^8+8*X^4*Y^8*Z^6+80*X^4*Y^8*Z^4+48*X^2*Y^4*Z^10+16*X^2*Y^8*Z^5+8*X^4*Y^8*Z^2+16*X^2*Y^8*Z^4+56*X^2*Y^4*Z^8+8*X^2*Y^8*Z^3+96*X^2*Y^8*Z^2+32*X^2*Y^4*Z^6+8*X^2*Y^8*Z+48*X^2*Y^4*Z^4+16*X*Y^8*Z+48*X*Y^4*Z^5+32*X^2*Y^2*Z^5+56*X*Y^4*Z^4+112*X^2*Y^4*Z^2+32*X^2*Y^2*Z^4+32*X*Y^4*Z^3+16*X^2*Y^2*Z^3+48*X*Y^4*Z^2+96*X*Y*Z^5+160*X^2*Y^2*Z^2+112*X*Y^4*Z+112*X*Y*Z^4+16*X^2*Y^2*Z+64*X*Y*Z^3+32*X*Y^2*Z+96*X*Y*Z^2+224*X*Y*Z

Algorithm definition

The algorithm ⟨10×10×28:1760⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨5×2×7:55⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table