Description of fast matrix multiplication algorithm: ⟨10×10×28:1778⟩

Algorithm type

2X6Y4Z4+94X4Y4Z4+6X6Y2Z2+2X4Y2Z4+2X2Y2Z6+18X4Y2Z2+40X2Y4Z2+38X2Y2Z4+12X3Y2Z2+616X2Y2Z2+36X3YZ+12X2YZ2+12XYZ3+108X2YZ+240XY2Z+228XYZ2+312XYZ2X6Y4Z494X4Y4Z46X6Y2Z22X4Y2Z42X2Y2Z618X4Y2Z240X2Y4Z238X2Y2Z412X3Y2Z2616X2Y2Z236X3YZ12X2YZ212XYZ3108X2YZ240XY2Z228XYZ2312XYZ2*X^6*Y^4*Z^4+94*X^4*Y^4*Z^4+6*X^6*Y^2*Z^2+2*X^4*Y^2*Z^4+2*X^2*Y^2*Z^6+18*X^4*Y^2*Z^2+40*X^2*Y^4*Z^2+38*X^2*Y^2*Z^4+12*X^3*Y^2*Z^2+616*X^2*Y^2*Z^2+36*X^3*Y*Z+12*X^2*Y*Z^2+12*X*Y*Z^3+108*X^2*Y*Z+240*X*Y^2*Z+228*X*Y*Z^2+312*X*Y*Z

Algorithm definition

The algorithm ⟨10×10×28:1778⟩ is the (Kronecker) tensor product of ⟨1×1×2:2⟩ with ⟨10×10×14:889⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table