Description of fast matrix multiplication algorithm: ⟨10×10×24:1504⟩

Algorithm type

16X4Y8Z8+88X4Y8Z4+16X2Y8Z4+32X2Y4Z8+88X2Y8Z2+64X2Y4Z6+32X2Y4Z4+32XY4Z4+144X2Y4Z2+32X2Y2Z4+64XY4Z3+32XY4Z2+176X2Y2Z2+144XY4Z+64XYZ4+128XYZ3+64XYZ2+288XYZ16X4Y8Z888X4Y8Z416X2Y8Z432X2Y4Z888X2Y8Z264X2Y4Z632X2Y4Z432XY4Z4144X2Y4Z232X2Y2Z464XY4Z332XY4Z2176X2Y2Z2144XY4Z64XYZ4128XYZ364XYZ2288XYZ16*X^4*Y^8*Z^8+88*X^4*Y^8*Z^4+16*X^2*Y^8*Z^4+32*X^2*Y^4*Z^8+88*X^2*Y^8*Z^2+64*X^2*Y^4*Z^6+32*X^2*Y^4*Z^4+32*X*Y^4*Z^4+144*X^2*Y^4*Z^2+32*X^2*Y^2*Z^4+64*X*Y^4*Z^3+32*X*Y^4*Z^2+176*X^2*Y^2*Z^2+144*X*Y^4*Z+64*X*Y*Z^4+128*X*Y*Z^3+64*X*Y*Z^2+288*X*Y*Z

Algorithm definition

The algorithm ⟨10×10×24:1504⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨5×2×6:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table