Description of fast matrix multiplication algorithm: ⟨10×10×16:1008⟩

Algorithm type

56X4Y4Z4+X6Y2Z2+2X2Y6Z2+3X2Y4Z4+2X2Y2Z6+13X4Y2Z2+24X2Y4Z2+22X2Y2Z4+357X2Y2Z2+6X3YZ+12XY3Z+18XY2Z2+12XYZ3+78X2YZ+144XY2Z+132XYZ2+126XYZ56X4Y4Z4X6Y2Z22X2Y6Z23X2Y4Z42X2Y2Z613X4Y2Z224X2Y4Z222X2Y2Z4357X2Y2Z26X3YZ12XY3Z18XY2Z212XYZ378X2YZ144XY2Z132XYZ2126XYZ56*X^4*Y^4*Z^4+X^6*Y^2*Z^2+2*X^2*Y^6*Z^2+3*X^2*Y^4*Z^4+2*X^2*Y^2*Z^6+13*X^4*Y^2*Z^2+24*X^2*Y^4*Z^2+22*X^2*Y^2*Z^4+357*X^2*Y^2*Z^2+6*X^3*Y*Z+12*X*Y^3*Z+18*X*Y^2*Z^2+12*X*Y*Z^3+78*X^2*Y*Z+144*X*Y^2*Z+132*X*Y*Z^2+126*X*Y*Z

Algorithm definition

The algorithm ⟨10×10×16:1008⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨5×5×8:144⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table