Description of fast matrix multiplication algorithm: ⟨10×10×14:889⟩

Algorithm type

X6Y4Z4+47X4Y4Z4+3X6Y2Z2+X4Y2Z4+X2Y2Z6+9X4Y2Z2+20X2Y4Z2+19X2Y2Z4+6X3Y2Z2+308X2Y2Z2+18X3YZ+6X2YZ2+6XYZ3+54X2YZ+120XY2Z+114XYZ2+156XYZX6Y4Z447X4Y4Z43X6Y2Z2X4Y2Z4X2Y2Z69X4Y2Z220X2Y4Z219X2Y2Z46X3Y2Z2308X2Y2Z218X3YZ6X2YZ26XYZ354X2YZ120XY2Z114XYZ2156XYZX^6*Y^4*Z^4+47*X^4*Y^4*Z^4+3*X^6*Y^2*Z^2+X^4*Y^2*Z^4+X^2*Y^2*Z^6+9*X^4*Y^2*Z^2+20*X^2*Y^4*Z^2+19*X^2*Y^2*Z^4+6*X^3*Y^2*Z^2+308*X^2*Y^2*Z^2+18*X^3*Y*Z+6*X^2*Y*Z^2+6*X*Y*Z^3+54*X^2*Y*Z+120*X*Y^2*Z+114*X*Y*Z^2+156*X*Y*Z

Algorithm definition

The algorithm ⟨10×10×14:889⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨5×5×7:127⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table