Description of fast matrix multiplication algorithm: ⟨10×10×12:770⟩

Algorithm type

40X4Y4Z4+2X6Y2Z2+X4Y2Z4+3X2Y6Z2+X2Y4Z4+3X2Y2Z6+12X4Y2Z2+14X2Y4Z2+13X2Y2Z4+261X2Y2Z2+12X3YZ+6X2YZ2+18XY3Z+6XY2Z2+18XYZ3+72X2YZ+84XY2Z+78XYZ2+126XYZ40X4Y4Z42X6Y2Z2X4Y2Z43X2Y6Z2X2Y4Z43X2Y2Z612X4Y2Z214X2Y4Z213X2Y2Z4261X2Y2Z212X3YZ6X2YZ218XY3Z6XY2Z218XYZ372X2YZ84XY2Z78XYZ2126XYZ40*X^4*Y^4*Z^4+2*X^6*Y^2*Z^2+X^4*Y^2*Z^4+3*X^2*Y^6*Z^2+X^2*Y^4*Z^4+3*X^2*Y^2*Z^6+12*X^4*Y^2*Z^2+14*X^2*Y^4*Z^2+13*X^2*Y^2*Z^4+261*X^2*Y^2*Z^2+12*X^3*Y*Z+6*X^2*Y*Z^2+18*X*Y^3*Z+6*X*Y^2*Z^2+18*X*Y*Z^3+72*X^2*Y*Z+84*X*Y^2*Z+78*X*Y*Z^2+126*X*Y*Z

Algorithm definition

The algorithm ⟨10×10×12:770⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨5×5×6:110⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table