Description of fast matrix multiplication algorithm: ⟨10×10×10:651⟩

Algorithm type

X6Y4Z2+32X4Y4Z4+X4Y2Z6+X2Y6Z4+X4Y4Z2+X4Y2Z4+X2Y4Z4+11X4Y2Z2+11X2Y4Z2+11X2Y2Z4+6X3Y2Z+214X2Y2Z2+6X2YZ3+6XY3Z2+6X2Y2Z+6X2YZ2+6XY2Z2+66X2YZ+66XY2Z+66XYZ2+132XYZX6Y4Z232X4Y4Z4X4Y2Z6X2Y6Z4X4Y4Z2X4Y2Z4X2Y4Z411X4Y2Z211X2Y4Z211X2Y2Z46X3Y2Z214X2Y2Z26X2YZ36XY3Z26X2Y2Z6X2YZ26XY2Z266X2YZ66XY2Z66XYZ2132XYZX^6*Y^4*Z^2+32*X^4*Y^4*Z^4+X^4*Y^2*Z^6+X^2*Y^6*Z^4+X^4*Y^4*Z^2+X^4*Y^2*Z^4+X^2*Y^4*Z^4+11*X^4*Y^2*Z^2+11*X^2*Y^4*Z^2+11*X^2*Y^2*Z^4+6*X^3*Y^2*Z+214*X^2*Y^2*Z^2+6*X^2*Y*Z^3+6*X*Y^3*Z^2+6*X^2*Y^2*Z+6*X^2*Y*Z^2+6*X*Y^2*Z^2+66*X^2*Y*Z+66*X*Y^2*Z+66*X*Y*Z^2+132*X*Y*Z

Algorithm definition

The algorithm ⟨10×10×10:651⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨5×5×5:93⟩.

Algorithm description

Algorithm symmetries

The following group of 18 isotropies acts as a permutation group on algorithm tensor representation:

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table