# Warning: the following LRP representation does not follow the plinopt encoding convention A:=Matrix(3, 4, [[A_1_1,A_1_2,A_1_3,A_1_4],[A_2_1,A_2_2,A_2_3,A_2_4],[A_3_1,A_3_2,A_3_3,A_3_4]]): B:=Matrix(4, 7, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7],[B_4_1,B_4_2,B_4_3,B_4_4,B_4_5,B_4_6,B_4_7]]): LRP:=[Matrix(63, 12, [[0,-1,0,0,0,0,0,0,0,0,-1,0],[1,-1,0,1/2,-1/2,0,0,0,0,0,0,0],[0,0,0,0,-1/2,1/2,0,0,0,0,1,-1],[1,0,0,0,0,0,1,0,0,0,0,0],[0,0,0,-1/2,0,-1/2,0,0,0,1,0,1],[0,0,-1,0,0,0,0,0,0,0,0,-1],[0,0,1,0,0,1/2,0,0,0,0,0,0],[0,1,-1,0,1/2,-1/2,0,0,0,0,0,0],[0,0,0,0,-1/2,-1/2,0,0,0,0,1,-1],[0,0,0,1/2,0,1/2,-1,0,0,0,0,1],[0,0,0,0,0,1/2,0,0,1,0,0,0],[0,0,0,0,-1/2,1/2,0,1,-1,0,0,0],[0,0,0,0,0,1/2,0,0,0,0,0,1],[0,1,0,-1/2,1/2,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0],[0,-1,1,0,1/2,1/2,0,0,0,0,0,0],[1,0,1,-1/2,0,1/2,0,0,0,0,0,0],[0,0,0,1/2,0,1/2,-1,0,-1,0,0,0],[1,0,0,-1/2,1/2,0,0,1,0,0,0,0],[0,1,-1,0,-1/2,1/2,0,0,0,0,0,0],[0,0,0,0,0,0,1,0,0,1,0,0],[0,0,0,1/2,0,1/2,0,0,1,-1,0,0],[-1,1,0,1/2,-1/2,0,0,0,0,0,0,0],[-1,0,0,1/2,0,1/2,0,0,0,0,0,1],[0,-1,0,0,1/2,-1/2,0,0,-1,0,0,0],[0,0,0,-1/2,1/2,0,1,0,0,0,1,0],[0,0,0,0,0,1,0,0,0,0,0,0],[0,0,1,0,-1/2,1/2,0,1,0,0,0,0],[0,0,0,0,0,0,0,0,1,0,0,1],[0,-1,0,1/2,-1/2,0,0,0,0,-1,0,0],[0,0,0,1/2,0,1/2,1,0,1,0,0,0],[-1,1,0,1/2,1/2,0,0,0,0,0,0,0],[0,0,0,0,1/2,-1/2,0,1,-1,0,0,0],[0,1/2,0,0,0,0,0,1/2,0,0,0,0],[-1,0,0,1/2,0,1/2,0,0,1,0,0,0],[0,0,0,1/2,1/2,0,-1,1,0,0,0,0],[0,0,0,1/2,-1/2,0,1,-1,0,0,0,0],[0,0,0,1/2,1/2,0,0,0,0,-1,1,0],[0,0,0,0,-1/2,1/2,0,0,1,0,1,0],[0,0,0,1,0,0,0,0,0,0,0,0],[1,0,0,-1/2,0,0,0,0,0,0,0,0],[0,0,0,1/2,0,1/2,0,0,0,1,0,1],[0,0,0,1/2,0,0,-1,0,0,0,0,0],[0,0,0,1/2,0,0,0,0,0,-1,0,0],[0,0,0,1/2,0,-1/2,-1,0,-1,0,0,0],[0,0,-1,0,1/2,-1/2,0,0,0,0,-1,0],[0,0,0,0,-1/2,-1/2,0,1,-1,0,0,0],[1,0,1,-1/2,0,-1/2,0,0,0,0,0,0],[0,0,0,1/2,-1/2,0,0,-1,0,-1,0,0],[0,0,1,1/2,0,1/2,0,0,0,-1,0,0],[0,0,0,0,-1/2,1/2,0,1,0,0,0,1],[0,0,0,0,1/2,-1/2,0,0,0,0,1,-1],[0,0,0,1/2,-1/2,0,-1,1,0,0,0,0],[0,0,0,-1/2,0,1/2,0,0,0,1,0,1],[1,0,0,-1/2,1/2,0,0,0,0,0,1,0],[0,0,0,1/2,-1/2,0,0,0,0,-1,1,0],[0,0,0,0,0,0,0,1/2,0,0,1/2,0],[0,1,0,0,-1/2,1/2,0,0,0,0,0,1],[1,0,1,1/2,0,1/2,0,0,0,0,0,0],[0,0,1,1/2,0,1/2,-1,0,0,0,0,0],[0,0,1,0,0,0,0,0,1,0,0,0],[0,0,0,1/2,-1/2,0,0,0,0,1,-1,0],[0,0,0,0,1,0,0,0,0,0,0,0]]), Matrix(63, 28, [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1],[0,0,0,0,-1/2,-1,1/2,1/2,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0],[1/2,1,1/2,-1/2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1],[0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1/2,0,-1/2,1/2],[1/2,1,1/2,-1/2,0,0,0,0,0,0,0,1,1/2,-1,1/2,1/2,0,0,0,0,0,0,0,1,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1/2,0,-1/2,1/2],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,-1,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/2,1,1/2,1/2,-1,0,0,0],[-1/2,-1,-1/2,1/2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1/2,0,1/2,1/2],[0,0,0,0,0,0,0,0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,1/2,1,-1/2,1/2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0],[1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1/2,0,1/2,-1/2],[0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1/2,0,-1/2,1/2],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1/2,1,1/2,1/2,0,0,0,0],[0,0,0,0,1/2,1,-1/2,-1/2,0,0,0,0,0,0,0,0,0,0,0,0,-1/2,1,1/2,1/2,0,0,0,0],[0,0,1,0,0,0,0,0,1/2,1,-1/2,1/2,0,0,0,0,-1/2,1,-1/2,-1/2,0,0,1,0,0,0,-1,0],[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/2,0,1/2,-1/2],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1/2,1,1/2,1/2,-1,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,1/2,0,-1/2,-1/2],[0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1/2,0,-1/2,-1/2],[0,0,0,0,1/2,-1,1/2,1/2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/2,0,-1/2,1/2],[0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/2,0,1/2,-1/2],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1/2,0,-1/2,-1/2],[-1/2,-1,-1/2,1/2,0,0,0,0,-1/2,-1,1/2,-1/2,0,0,0,0,0,0,0,0,1/2,-1,-1/2,-1/2,0,1,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1/2,0,-1/2,1/2],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1/2,0,-1/2,-1/2],[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1/2,0,1/2,-1/2],[0,0,0,0,0,0,-1,0,1/2,1,1/2,1/2,0,0,1,0,-1/2,1,1/2,-1/2,0,0,0,0,0,0,-1,0],[0,0,0,0,1/2,1,-1/2,-1/2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,1/2,1,1/2,1/2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1],[0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/2,0,1/2,-1/2],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1/2,1,1/2,-1/2,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,1/2,-1,-1/2,1/2,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,0,0,0,0,-1/2,1,-1/2,1/2,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1/2,0,1/2,1/2],[0,0,0,0,1/2,1,-1/2,-1/2,0,0,0,0,1/2,-1,1/2,-1/2,-1/2,1,1/2,-1/2,0,0,0,0,0,1,0,0],[0,0,0,0,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[1/2,1,1/2,1/2,0,0,0,-1,0,0,0,0,1/2,-1,1/2,-1/2,0,0,0,-1,0,0,0,0,0,0,0,-1],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,1/2,1,-1/2,1/2,0,0,0,0,-1/2,1,1/2,-1/2,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1/2,0,-1/2,1/2],[0,0,0,0,0,0,0,0,-1/2,-1,1/2,-1/2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[-1,0,0,0,1/2,-1,1/2,1/2,-1,0,0,0,0,0,0,0,0,0,0,0,1/2,-1,-1/2,-1/2,1,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1/2,0,-1/2,-1/2],[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,-1/2,0,1/2,-1/2],[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/2,0,-1/2,-1/2],[1/2,1,1/2,1/2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/2,-1,1/2,1/2,0,0,0,0,0,0,1,0],[-1/2,-1,-1/2,1/2,0,0,0,0,0,0,0,0,-1/2,1,-1/2,1/2,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/2,0,-1/2,1/2],[0,0,0,0,0,0,0,0,0,0,0,0,1/2,-1,1/2,1/2,0,0,0,0,0,0,0,0,0,0,0,-1],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1/2,0,1/2,-1/2],[0,0,0,0,1/2,1,-1/2,-1/2,0,0,0,0,1,0,0,0,-1,0,0,0,1/2,1,1/2,1/2,-1,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,1/2,0,1/2,-1/2],[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1/2,0,-1/2,1/2],[0,0,0,0,0,0,0,1,0,0,0,0,-1/2,1,-1/2,1/2,0,0,0,1,0,0,0,0,0,0,0,1],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]]), Matrix(21, 63, [[0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0],[0,-1,0,-1,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,1,-1,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,1,0,0,0],[0,1,0,1,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,1,0,1,0,0,0,0,-1,0,0,0,1,0,-1,0,0,0,-1,1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[-1/2,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0],[1/2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0],[-1/2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,1,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0],[-1/2,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[-1/2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1],[0,0,1,0,0,1,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,-1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0],[0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0],[0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,-1,0,1,-1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,0,0,0,-1,0,0,1,0,0]])]: # From LRP representation to actual matrix multiplication computation: 'LinearAlgebra:-Map(expand,LRP[3].zip(`*`,LRP[1].convert(A,Vector),LRP[2].convert(B,Vector)) -convert(LinearAlgebra:-Transpose(A.B),Vector))'=Vector(21, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]);